UNIVERSITY OF TRENTO - Italy

Department of Information Engineering and Computer Science

Bachelor’s Degree in
Computer Science

FINAL DISSERTATION

MULTI-USER VIRTUAL REALITY THROUGH
MOBILE DEVICES USING LEAP MOTION

Supervisor Student
Niculae Sebe Mirko Pani
Co-Supervisor

Fabio Poiesi

Academic year 2016/2017

Contents

Abstract
1 Introduction

2 Devices and Technology

2.1 Virtual reality
2.1.1 Head mounted devices (HMD)
2.1.2 Inputdevices

2.2 Leap Motion e e
2.2.1 Leap-framesdata
2.2.2 Websocket server

2.3 Unity3D o
2.3.1 Multiplayer support L
2.3.2 Virtual reality integration with Google VR
2.3.3 Leap Motion assets L

2.4 Proposed distributed approach L
2.4.1 Communication mechanisms oL
2.4.2 Distance-based level of detail00

2.5 SUMMAry e e e

3 Prototype development

3.1 Architecture overviewo e
3.2 Bringing Leap Motion to mobile devices oL
3.2.1 Frame conversion e e e e e e
3.2.2 Frame rate limit approaches L Lo oo
3.3 VRinteractions e e e
3.3.1 Gazeinteractions
3.3.2 Hands interactions
3.4 Multiplayer oL
3.4.1 Player and object synchronization
3.4.2 Visualisation data exchange o oL
3.5 Summary ... e e
4 Results
4.1 Frame rate analysis oL Lo
4.2 Distributed method analysis
4.2.1 Network traffic
4.2.2 Transmission latency
4.3 Qualitative analysis oL e
4.4 DISCuSSIONo e e e
4.5 Summary e e e e

© 00 0o D

5 Conclusion and future work

5.1 Conclusion o s
5.2 Future work e
Bibliography

Abstract

Multi-user virtual reality environments allow multiple users to interact with each other by connecting
to the same session via virtual reality (VR). These systems make it possible to apply the potential
of VR to any type of application domain, from the computer games and entertainment industry to
the manufacturing or design sector; pushing the limits of human experience. However, at present,
systems of this kind require expensive VR hardware that is not accessible to many. In addition, these
VR experiences often make use of remote controllers that limit the possibility for more immersive
interactions and at the same time require some prior experience in order to be used. The purpose of
this thesis is to study, implement and evaluate a VR setup that allows a multi-user VR experience
at low cost, while being at the same time more easily accessible to everyone. The application is
designed to be used on Android smartphones and is based on the Unity3D game engine. We use
Google Cardboard as the head mounted display (HMD) for the VR and a Leap Motion for hand
tracking, thus enabling gesture-based interactions. We have implemented a VR environment in which
users can interact with each other or with mutable objects through the use of hands. We have also
designed and implemented a scalable system for the transmission of a large amount of data between
users, used for exchanging high-throughput visualisation data (e.g. hand joints) amongst participants.
The developed system has been tested in different scenarios with up to seven users connected using
real devices. The results obtained have demonstrated the feasibility of this type of application on
mobile devices, although with significant limitations compared to high-end VR experiences.

1 Introduction

Virtual reality (VR) has long been recognised for its potential to revolutionize entire sectors [10].
Through the creation of immersive visual experiences, virtual reality provides experiences and interac-
tions that are difficult or impossible to realize in reality. Many application domains already make use
of immersive single user VR experiences; such as education, urban planning, simulations, computer
games and medical applications. However, the diffusion of VR technology and the recent commercial-
isation of high quality VR hardware solutions suitable for the consumer market is increasingly leading
to the creation of immersive multi-user environments [11]. In these systems, multiple users can interact
with each other to achieve a common purpose, even at a geographical distance. Applications, such as
education [9], manufacturing [6], engineering and construction [13], medics [16] and video gaming [39],
have shown great interest in multi-user VR. Although it is becoming increasingly widespread, there
are two significant limitations currently present in this kind of VR experience. The first limit concerns
the high cost. Most of these systems require a high-end viewer such as HTC Vive [28] and Oculus
Rift [37], in addition to a high-performance computer in order to work. Secondly, these experiences
generally use physical controllers. These devices have the advantage of ensuring stability and ease of
use for those who are already familiar with that type of device, but have strong limitations in terms
of the naturalness of interactions [45, 17]. Moreover, a physical controller is difficult to use for those
who have no previous experience. To achieve total immersion and to open up new opportunities in
VR, technology developments are driving towards in-air hand tracking using devices such as Leap
Motion [30]. Fig. 1.1 shows an example of collaborative virtual environment (CVE) where partici-
pants interact using hand gestures. Unfortunately, there are still several challenges that prevent an
uncompromising experience using hand-free interactions in VR, such as transmission latency, high
computational demand and hand tracking robustness [12, 21].

The work accomplished in this thesis aims to exploit the potential offered by VR multi-user expe-

Figure 1.1: Collaborative virtual environment where two groups of participants are interacting via
hand gestures.

riences, by trying to mitigate its stronger limits: cost and accessibility. Therefore, the purpose of this
thesis is to study, implement and evaluate a prototype that allows a multi-user VR experience at low
cost, while being at the same time more easily accessible to everyone. The application is designed to
be used on Android smartphones: the wide diffusion and the possibility of using cheap VR headsets
makes mobile devices an ideal platform for this purpose. In this regard we opted to use the Google
Cardboard platform as the head mounted display (HMD), allowing a VR experience at a much more
affordable cost compared to a high-end viewer. We use the Leap Motion device for hand tracking, in
order to allow the user to interact with the world and other players through the use of hands. Figure
1.2 shows an user using his hands to interact with the prototype.

Figure 1.2: An user using the Leap Motion device mounted on a HMD to interact with the application.

The advantage of this setup is the low cost for the user and the ease of use of the application.
In the realized prototype it is possible to interact with objects or other users within the same shared
session. Many people, connected to the same local network or over the Internet, can play with each
other by connecting to an already established game session or by hosting a new one. Users can interact
with the simulated virtual world by picking, rotating or scaling mutable objects. Every change made
to the game world is transmitted and synchronized between all users. In addition, users participating
in the same session can also see virtual hands representative of other users’ hands, in addition to their
own hands.

Leap Motion does not yet support its direct connection to smartphones [21]. Therefore, we devel-
oped a system that can transmit information from a computer connected to the device to the mobile
phone by using a server with Websocket protocol. The prototype has been implemented through the
use of the Unity3D game engine [40]. The availability for a free license, the large number of features

4

and complete support for smartphones makes Unity3D an excellent platform to use to implement this
type of application. Some technical challenges were faced in order to achieve the multi-user aspect: the
use of devices such as smartphones, which have limited computational power, requires special atten-
tion to how data is processed and transmitted between multiple devices. One of the main challenges is
the transmission of hand data reconstructed with Leap Motion. In fact, Leap Motion produces high-
frame rate hand visualisation data that leads to high throughput when the hand visualisation data is
exchanged over a network populated of clients [32, 21]. To mitigate the problem of high throughput,
one can employ different data transmission strategies based on peer-to-peer or hybrid communications.
Hybrid approaches use server and peer-to-peer communications interchangeably, and are typically em-
ployed in massively multiplayer online games (MMOGs) [5, 14]. One can also use an area-of-interest
(AOI) based approach where a VR space is divided into zones and data are transmitted peer-to-peer
amongst users that are located within the same zone [1].

In this thesis we implement a scalable mechanism to exchange data amongst clients in multi-user
virtual environments:

e An ordinary client-server mechanism is used to update the states of mutable objects and to sync
game-state information. We use a subset of Unity3D features called HLAPT [41] to implement
this aspect.

e A distributed mechanism is used to handle high-throughput visualisation data exchanges. Differ-
ently from the AOI-based approach where the data transmission between clients is either active
or inactive without accounting for levels of detail, we use clients’ relative distances in the VR
space to dynamically variate the resolution of transmitted visualisation data. We use a custom
protocol using UDP sockets to exchange visualisation data.

The results and tests carried out have demonstrated the validity of the method and a decrease in
measured network traffic and perceived latency.

The project was developed during the internship experience at the Bruno Kessler Foundation
(FBK) in Trento, Italy [24]. We were responsible for implementing the whole application and designing
the semi-distributed architecture under the supervision of Fabio Poiesi. Part of the work realised for
this thesis is covered in a submitted paper entitled ‘Distributed data exchange with Leap Motion’
[19] for the “Salento AVR 2018 International Conference on Augmented Reality, Virtual Reality and
Computer Graphics”. The application has been tested in numerous scenarios on mobile devices.
During the FBK ‘Open Day’ initiative, groups of two people were able to test the application by
collaborating in the same virtual world. The demonstration involved several people and lasted more
than an hour. The feedback received confirmed the ease of use of the application and the possibilities
offered by possible future developments.

The thesis is structured as follows.

Chapter 2: Provides an overview of the technologies and concepts used in this thesis.

Chapter 3: Explains the features and the implementation of the prototype.

Chapter 4: Describes and discusses evaluations and tests performed on the prototype. This
chapter also presents a discussion about the limitations of the study.

Chapter 5: Concludes the thesis and discusses possibile future research.

2 Devices and Technology

The purpose of this chapter is to introduce the reader to the basic notions necessary to better under-
stand the work done in this thesis. Generic concepts such as VR and the devices that characterise it
are presented. Moreover, we describe here the technologies used to implement the application: the
Leap Motion tracking device and the Unity3D game engine. The approach used for transferring data
related to the visual appearance of user’s hands is also described.

2.1 Virtual reality

Virtual reality uses computer graphics to generate a 3D image or an environment with which it is
generally possible to interact. A wide variety of devices are employed to simulate the physical presence
of a user in a virtual world [3]. Images, sounds and possible physical representations of objects allow
the user to look around, move and interact within a simulated world. VR technologies must therefore
be as natural as possible in order to guarantee a good experience of use. Speed of reaction and accuracy
to the user’s interactions must be ensured so that no problems or discrepancies in the user’s senses
are caused. For example, a player’s movement within the virtual world, if not matched by physical
movement, can cause symptoms related to motion sickness [2]. Different types of sensors are used
to create an experience that is as realistic and life-like as possible. Some are public and frequently
used, others are still in the prototype or development stage. These devices can be divided into two
categories: input and output. Input devices are used to record physical user interactions. Output
devices, on the other hand, are a set of devices used to present information to one or more of the
user’s senses through the human perceptual system.

The most common and widespread VR devices are the head mounted displays, necessary to simulate
an experience in VR.

2.1.1 Head mounted devices (HMD)

Virtual reality is generally experienced using devices mounted on the head, even if VR experiences
created with rooms supplied with specific equipment exist [7]. They are the only fundamental device
needed to access the world of VR, as they are necessary to present virtual images in the eyes of the
user.

HMDs can be classified by their technical parameters:

e Display: The display can be produced with different technologies, such as LCD or OLED. In
addition, each screen can have different resolutions and be equipped with a different pixel-per-
inch (PPI) ratio. The higher the resolution and PPI ratio, the more immersive the experience
will be.

e Refresh rate: Another feature related to the screen is the refresh rate, i.e. how long it takes
for the screen to change its content. For a comforting VR experience, it is estimated that a
minimum refresh rate of 60 Hz is required [8, 20], although there are currently displays that
support a refresh rate of up to 120 Hz.

e DOF Tracking: Degrees of Freedom (DOF) refers to the movement of a rigid body inside a 3D
space. Most HMDs only offer rotational tracking and therefore only 3 degrees of freedom: pitch,
yaw and roll (3DOF). Higher performance HMDs allow positional tracking (6DOF), adding 3
axes of translation to the 3 axes of rotation.

e Field of View: The Field of View (FOV) is the extension of a world visible to the eye. Humans
have a FOV of about 210 degrees for the horizontal arc and around 150 degrees for the vertical
range. The current HMDs are unable to offer such FOV and generally stop at 120 degrees. A
larger FOV allows for a better sense of immersion [15].

6

HMDs can also be divided into two main categories: wireless and wired. These two groups differ
mainly due to difference in cost and technical characteristics.

Wireless HMDs are also called mobile-enabled HMDs. They include the set of head mounted
devices that do not require a computer and therefore can be used without cables. Some of these can
be simple containers for smartphones, while others are stand-alone devices with their own screen and
processing unit. This type of viewer is the most cost-effective, at the expense of a limited experience
compared to wired viewers. In fact, by using a mobile device as a processing unit, a mobile HMD
has less processing power available if compared to a computer. However, the potential offered is
nonetheless considerable: wireless, low-cost, and accessible VR experiences for everyone.

The HMD mobile market is currently characterised by three main platforms:

e Google Cardboard: Cardboard is a VR platform developed by Google in 2014. A user can
buy a certified viewer or build one with simple materials following the technical specifications
provided by Google [25]. The original headset uses simple cardboard and a pair of lenses to
create a smartphone holder, which will then be used as a processing unit and screen. There are
different versions available from different manufacturers, with a variable cost depending on the
materials used.

Compared to competitors, the Cardboard platform offers a more limited experience. The quality
obtained from a VR experience on the Cardboard totally depends on the smartphone used,
since there is no circuit in the viewer. Despite this, the Cardboard platform is currently the
most popular VR ecosystem. The Cardboard platform can be used on any gyroscope-enabled
smartphone equipped with Android or iOS operating systems.

e Samsung Gear VR.: The samsung Gear VR is a VR headset for mobile devices designed by
Samsung in collaboration with Oculus. The first model was released in 2015, although several
revisions were released in the following years. Gear VR is only suitable for use on Samsung
smartphones.

Although a phone is still required to use Gear VR, there are significant differences from the
Cardboard platform. While the phone is still used as the viewer’s display and processor, the
Gear VR also offers a custom rotational tracking unit called Inertial Measurement Unit (IMU).
This unit enables more precise rotational tracking than sensors on smartphones. In addition, the
Gear VR can also perform the function of controller, as it has a keypad. Gear VR is therefore
equipped with its own electronic component, and in order to work it must be connected to the
phone used via USB. The Gear VR software operates at a low level compared to the Cardboard
SDK, enabling low persistence and less latency [38]. Gear VR therefore offers a more immersive
experience than the Cardboard platform, at the cost of a much higher price.

e Google DayDream: Daydream is another VR platform developed by Google. It is the follow-
up to the Cardboard platform and was announced in 2016. It was designed with the aim of offer-
ing a better VR experience than the one achieved with the predecessor. Unlike Cardboard, the
Daydream platform has specific hardware and software requirements and only phones that meet
them can be used with the viewer. These requirements include technical specifications deemed
necessary by the platform to have good quality VR experience. Among other requirements, a
minimum latency and resolution for the display is specified. Moreover, only smartphones with
Android 7.0 or higher are supported, as a dedicated software mode is required for Daydream ap-
plications. In addition, the Daydream platform allows for standalone devices that do not require
a phone as a processing unit [27]. The Daydream platform, unlike Cardboard and Gear VR,
supports 6DOF tracking without the use of external devices. This feature allows VR experiences
very similar to those allowed by wired viewers.

The second category of viewers refers to wired HMDs, generally used with computers or consoles.
These types of viewers are considered to be high-end viewers as they allow a higher quality VR
experience than a mobile viewer. These devices have their own integrated display which offers high
resolution, a refresh rate of at least 90Hz and a FOV above 100 degrees. These wired HMDs generally

use USB and HDMI connections for transferring tracking and video signal information. The most
popular viewers of this type are the HTC Vive and Oculus Rift.

Figure 2.1 illustrates some of the most commonly used HMD. Regardless of the type of HMD used,
it is still necessary to have an input device to provide VR experiences in which the user can interact.

&/

>

-
"

e

Figure 2.1: Virtual reality headsets. Starting at left from above: Google Cardboard, Samsung Gear
VR, Google DayDream, HTC Vive, Oculus Rift, Playstation VR.

2.1.2 Input devices

In this section we intend to illustrate the different types and characteristics of devices capable of
capturing user input. The most classic devices for this purpose are controllers. Controllers used for
VR can be considered as an improvement to traditional controllers. In fact, they have the typical
features of a normal controller, i.e. levers and buttons, in addition to 6DOF tracking, technology also
offered in high-end HMDs. Each device has its own variants compared to the standard components
of a controller. The Half Moon controllers [37], created by the Oculus group, have capacitive sensors
capable of detecting finger movement. Another example could be the HTC Vive controller [28], which
uses a touchpad rather than an analogue stick. In the mobile field, a controller [26] developed by
Google as part of the DayDream project has recently been introduced. It has only 3 degrees of
freedom and is therefore unable to recognize its position in space. However, its ergonomics and ease
of use make it effective in many virtual applications. Even though the present controllers have forms
and uses similar to traditional ones, some devices using concepts that lend themselves to a better VR
experience are in development. For example, the Knuckles devices designed by Valve Corporation
have a shape that allows the user to let go the controller without dropping it. While these devices
are mostly suitable, they are obstructive and require some experience in using them. To overcome
these limitations, devices capable of visually interpreting physical gestures are becoming increasingly
popular. These tracking devices generally allow body or hands tracking in order to provide a more
immersive experience. The numerous technical challenges make these devices still premature to be
used on a large extent [12, 21]. Despite this, devices such as Leap Motion have reached sufficient
maturity to be used as a control interface in VR experiences.

2.2 Leap Motion

The Leap Motion device [30], created by the company of the same name, is a hardware sensor that
allows tracking of hands and fingers. It takes the form of a small USB device, designed to be positioned
above a surface or alternatively mounted on an HMD (Fig 2.2).

Through the use of two monochrome IR cameras and three infrared LEDs, it is able to detect
hands within a meter radius of its surface without any physical contact. It has a field of view of about
150° on the long side, and 120° for the short side. Its operating range is between 2.5 and 8 cm from
the surface of the device. Leap Motion is able to provide an accurate tracking, given the small size

Figure 2.2: Leap Motion device.

of its field of view. The generated data, or leap-frames, have a normal frequency of 115 frames per
second (fps) [31, 32]. According to various studies, the accuracy offered by Leap Motion is 0.7mm
[12]. The images obtained from the cameras are transformed into data through the use of algorithms
not made publicly available by the company. The data obtained by the device can be used by any
software using special libraries provided by Leap Motion. Leap Motion therefore needs special software
in order to work. The first versions of this SDK, called V1 and V2 [34], were released in 2014 and
support Windows, Mac Os and Linux operating systems. These software versions do not support VR
environments in a native way and are therefore not recommended for use by the manufacturer. The
latest version of this software, called Orion [35], has been designed with the world of virtual reality
in mind. It offers reduced latency and improved tracking compared to previous versions. Currently,
the Orion version is only available for Windows environments and is released in Beta state. Given
the high computational demand required for proper tracking performance, use in portable or low-cost
devices such as RaspBerry Pi is not currently possible. The release of a mobile version of the device
compatible with smartphones has already been announced [33], even if details about the release date
are not yet available. The Leap SDK also offers libraries for C++ and C# programming languages,
in addition to the support for Unity3D and Unreal Engine game engines. Integration of Leap Motion
with the Unity3D environment is covered in greater detail in section 2.3.3. A javascript library called
"leap.js’ is also available for the creation of Web applications.

Leap Motion, in addition to being used as a peripheral device for applications and games, has
already been used in some research fields, such as medical and industrial research. Reference [4]
studied the possibility of using Leap Motion as a controller for a robotic arm. In addition, numerous
studies have evaluated the possibility of its use to recognise sign languages in real time [18].

Although not originally designed for VR, the Leap Motion has found a natural application in this
field. Its small physical dimensions combined with its light weight allow it to be placed on any HMD
without weighing it down significantly. The high tracking accuracy allows for a new kind of user
interaction. Through the use of one’s own hands, in fact, any person can interact with a virtual world:
from the recognition of specific gestures to taking objects by pinching with fingers. Therefore, a more
immersive experience can be provided compared to traditional controllers. In order to recreate the
tracked hands accurately and offer this type of immersive interaction, the Leap Motion needs to encode
specific data about fingers and hands, such as their position, rotation, etc. As previously discussed,
this data is saved in special objects called leap-frames.

2.2.1 Leap-frames data
Data contained in leap-frames differ according to the version of the software used. There are also
small variations on the structure of the classes depending on the programming language. The data
composition used by the latest version of Orion available for the C# language [36] will now be briefly
reviewed.

Each single frame object contains all the properties relative to the hands traced for a precise
moment of time, as well as useful information such as the current refresh rate and the timestamp
associated with that frame. Each Hand object in turn contains all the specific information related to

a single hand: position in space, rotation, number and type of fingers associated with that hand. In
addition, it also contains information about its associated arm. Each traced finger consists of four
bones, represented by the Bone object. Numerous position and rotation vectors for each bone allow
an accurate representation of the fingers. In the case of the thumb, the metacarpal bone is set to
zero length to reflect the actual anatomical model. All measurements made by the Leap Motion are
provided in millimetres and radiants in the case of distances and angles, respectively. The Leap Motion
device uses a right-handed Cartesian coordinate system, where the origin is centered at the top of the
device.

The leap-frames obtained from the device are made available to any application that requires
them through the use of sockets. The Leap software provides a TCP socket for sharing data for local
applications, and a server using the Websocket protocol for remote applications.

2.2.2 Websocket server

For Web or remote applications, Leap Motion’s installed software provides a Websocket server [36] for
obtaining tracking data. The server is hosted in the computer connected to the Leap Motion device.
Any client application that supports a Websocket connection can therefore access the Leap Motion
tracking data in the form of JSON-encoded strings. In addition to sending tracking data, the server
can also notify connected clients of events such as connecting or disconnecting the Leap Motion device
with the computer. The Websocket server has a subprotocol used for communication with the client,
in order to be able to specify the type and composition of sent messages. If a connected client needs
to use the VR tracking mode, it can, for example, notify the server by sending the JSON-encoded
message * “optimize HMD”: true’. The version of the protocol to be used may also be specified, where
each version of the protocol has its own different features set.

2.3 Unity3D

Unity3D [40] is a game engine developed specifically for the creation of 2D and 3D games and simula-
tions. It is available for many platforms, including computers, consoles and mobile devices. Features
such as graphics rendering, custom materials creation, physical simulation, multiplayer support and
scripting capabilities make Unity a powerful tool to create a wide variety of applications. Its ease of
use, extensive support and numerous updates have made Unity a popular graphics engine [44]. By
using the Asset store custom assets created and made available by the Unity community can be bought
or sold.

Currently Unity is available in four licenses: Personal, Plus, Pro and Enterprise. Unity Personal
[43] is available free of charge and is especially suitable for use by students, researchers and hobbyists.
It contains all of the engine functionalities and deployment capabilities for every supported platform.
Its use is limited to those who do not exceed $100K in annual gross revenues. The Plus, Pro and
Enterprise versions contain additional features suitable for large development studios, at the expense
of a monthly fee. Our prototype is based on Unity personal.

Unity defines some basic concepts for the creation of scenes and graphic objects. The most relevant
concepts will now be explained:

e Gameobject: basic fundamental class. Each entity in the application is in fact a GameObject,
with a custom behaviour defined by specific scripts called Component.

e Component: custom script that defines a certain behaviour or characteristic. A component
must be associated with a Gameobject in order to work. There are a number of components
already made available by Unity. Creation of custom components is possible using the C#
programming language. Each component inherits from a parent class called MonoBehaviour
that provides some useful functions to execute code at specific points in the life cycle of a
component.

e Scene: a scene contains the environment and all the objects in the game present in a certain
level or screen. A scene may contain a menu, interface, level or the whole game.

10

e Asset: any file that can be used in the game or project. Models, texture, audio files and images
are all examples of assets. A Unity3D project therefore consists of a set of assets.

Our project, like any other Unity3D application, makes use of these concepts. In addition to using
some essential Components such as those used for graphic rendering, the implementation aspect of
the thesis focuses on some specific Assets needed for Leap Motion to work in a VR environment. In
addition, the prototype produced makes particular use of the multiplayer aspect of Unity. We will
now explain these concepts in more detail.

2.3.1 Multiplayer support
Unity offers support for local network or Internet multiplayer applications [42]. Two different systems
are available for building multiplayer capabilities for Unity games: the High-Level APIs (HLAPIs)
and the Low-Level APIs (LLAPIs). LLAPIs offer a real-time transport layer and are suitable for
the creation of network infrastructures or advanced applications. On the other hand, HLAPIs are
recommended for the creation of video games without particular demands. Our working prototype
has been developed using HLAPIs.

HLAPIs have been built using LLAPIs as a lower transport layer and are responsible for managing
numerous tasks common to this type of games. Below is a list of the main features that HLAPIs
support:

e Network Manager for managing the networked state of the game

General-purpose data serializer

Ability to send and receive network messages, including events, commands and remote proce-
dures

Object spawning system

State-synchronization across the network

HLAPIs implement a client-server architecture with an authoritative server. Since HLAPIs use an
authoritative server system, the server has the role and the authority to update the state of the objects
in the environment. It is however possible to assign the authority for an object to a specific client. In
this way, a client can request changes to an object by sending a private command to the Server. This
approach is used for player representative objects in the game world, so that a client can communicate
to the server the latest information based on local user input. When an object has to be created in
the game world, its creation is delegated to the Spawning System. This system creates the object in
all instances of the game, and synchronizes its properties to all connected players. Each object has a
unique identifier known as ‘Netld’, that is the same on the server and clients. This attribute is used
to identify the object on the network. The use of this object management system is indispensable to
realize applications using these APIs. Section 3.4 describes how these concepts have been used and
adapted to implement the prototype.

Although it is possible to have a dedicated server, the creation of a game is generally entrusted to
one of the participants, who therefore assumes the role of client and host. In our case, both the host
and connected clients use smartphones to participate in the same game session. Connected users can
play with each other by connecting to the same LAN network.

2.3.2 Virtual reality integration with Google VR

Unity supports integration with VR. A single API interface is provided to interact with a variety of
VR devices. If enabled, Unity will automatically render on an head-mounted display. In addition,
head tracking and FOV are automatically applied to the game’s camera, so that the movements in
the game may match those of the user. This aspect is necessary to get a good VR experience without
nausea.

Many different VR SDKs are supported by Unity, including Google VR. The Google VR SDK
provides support for Cardboard and DayDream technologies. It makes a large number of assets
available to support different kinds of HMDs and input controllers. Development with Google VR is
allowed for devices running Android Lollipop or higher; or alternatively iOS 8 or higher.

11

2.3.3 Leap Motion assets

The Leap Motion Orion SDK contains specific assets and modules to support the Unity game engine.
This collection of assets allows the use of the Leap Motion device in any Unity application, as well as
providing a set of tools to simplify the design of user interfaces, hands and interactions. Specifically, a
set of assets called ” Core Assets” is necessary to obtain Leap data in Unity environments. In addition,
some optional modules are provided, each with a specific function:

e Interaction Engine: The Interaction Engine allows natural custom interactions with any game
object. By using the interaction engine, specific behaviours can be specified for actions such as
touching, grasping or hovering over a Gameobject with the virtual hands.

e Graphic Renderer: The Graphic Renderer Module is used to optimize draw calls and to design
user-friendly curved interfaces.

e Hands Module: The Hands Module provides a handful collection of hands models ready to
use, in addition to an autorigging pipeline used to create custom models.

In order to visualize and create hands contained in leap-frames, some components provided by
the Core Assets must be used. The LeapServiceProvider class is used to communicate with the Leap
software installed on the computer. It makes Frame objects available to all components that require
them. LeapHandController and HandPool components use the frame objects obtained by the provider
class to generate and update hand models based on frame data in real time. Moreover, it is possible
to specify the aspect of the virtual hands through different implementations of the HandModel class.

Figure 2.3: Various aspects of virtual hands, based on the Leap Motion assets.

2.4 Proposed distributed approach

This section will explain the method by which we managed the transfer of a large amount of data
between multiple users, using a distributed approach. In particular, this approach is used for the
purpose of transmitting visual information about the hands of each player to allow for gesture based
interactions. Due to the large amount of information generated by Leap Motion, it is not possible to
transfer these data between multiple users in a ”vanilla” way. If fluid interactions are to be achieved
with as little latency as possible, optimizations and specific approaches are therefore required. Given
a set of participants that interact in the same virtual environment, we will describe the proposed
communication mechanism where pairs of users exchange visualisation data under reciprocal requests
of levels of detail that depend on their spatial distance in the VR space.

2.4.1 Communication mechanisms
The communication amongst users is decoupled to handle data differently based on its type. We use
the typical authoritative mechanism to handle client enrollments and a peer-to-peer data exchange
strategy to handle high-throughput visualisation data efficiently. In our case visualisation data are
produced by Leap Motion [21].

A user that initiates a VR session can be both the host and a client. The host is in charge
of (i) updating the states of the mutable objects that require synchronisation amongst clients and

12

(ii) managing client enrollments/disenrollments. When a client enrolls to a VR session, the host
broadcasts its IP and port addresses (enclosed in a broadcast message) to the other connected clients.
When a client disenrolls, the host informs the connected clients that a client has left the virtual
environment. These broadcast messages are used by each client to store and maintain an updated
table with the network addresses of the connected clients. We name this table as Sync Table. Each
client has the same copy of the Sync Table and can use this global knowledge to establish peer-to-
peer communications with other clients to exchange visualisation data. In this way, high-throughput
data does not go through the host thus reducing its the computational load. This is an important
element because when devices like smartphones are used, they have limited computational capability
and battery duration.

Fig. 2.4 shows an example where we can observe that the requests and the information exchanged
over the network can be halved in the case of peer-to-peer communications.

Authoritative Server Peer-to-peer

<
N ’
™
1- REQ INFO(B
2- INFO(B)

Figure 2.4: Difference between authoritative and peer-to-peer mechanisms. Requests (REQ) and
information (INFO) exchanged over the network are halved in the case of peer-to-peer communications.

2.4.2 Distance-based level of detail

Data that represents hand gestures are typically sampled at a high frame rate to visualise natural
movements. However, when hand gestures are seen from far, details might be unnoticeable. We
exploit the knowledge that each client has about the position of the other clients to dynamically
variate the level of detail at which the visualisation data are exchanged. Levels of detail are typically
used to define multiple representations of a model with decreasing resolution in order to reduce the
rendering cost for distant or less important objects [23].

In order to achieve this we designed a request-based mechanism. Clients that are involved in an
interaction, reciprocally request their desired level of detail to other clients. The queried clients that
accept the request will transmit the visualisation data at the requested level of details. We use the
spatial distance between clients in the VR space as a criterion to select the appropriate level of detail:
the closer the two clients, the higher the resolution of the visualisation data they exchange. Note that,
a system based on requests can also provide the possibility to extend this distance-based criterion to
additional criteria for example based on network or rendering capacity. In this work we analyse the
case of distance only.

Fig. 2.5 shows five clients that are connected to the same VR space, one is the host/client and the
others are clients. The top part of the figure shows an example with four levels of detail:

LO defines the maximum level of detail where no approximations of the hand joints are applied. This
could be the case where two or more clients are interacting “face to face” and high-detailed joint
movements is key to visualise natural gestures;

L1 defines an intermediate level of detail where a subset of joints are transmitted, while ensuring
that a well approximated hand motion can still be perceived. This could the case where the client
requesting the visualisation data is not interacting directly with the queried client, but their distance
is such that their hand movements are still visible;

L2 defines another intermediate level of detail where a minimal subset of joints is transmitted to show
basic hand movements. This could the case where the client requesting the visualisation data is far
from the queried client and its hands are barely visible;

L3 defines no data transmission as clients are out of line of sight.

13

L3 (L2 (L1

Sync Table
U, IP:PORT (x=0,y=1,2=3)

Sync Table
Uy IP:PORT (x=0,y=1,z=3)

Hp-| =1 y=2.2="
V2" IP:PORT (x=1,y=2,2=3) U, IP:PORT (x=1,y=2,2=3)

Us IP:PORT (x=6,y=1.5,2=3)

Us IP:PORT (x=6,y=1.5,2=3)

Uy [202,.]
H

Us [1,04,.] Uz" [0503..] Sync Table

Uy [0.3,02,..] Us [[30.1,..] Uy IP:PORT (x=0,y=1,2=3)

Sync Table
Uy IP:PORT (x=0,y=1,2=3)

UM IP:PORT (x=1,y=2,2=3)

UM IP:PORT (xet,y=2,23) Us IP:PORT (x=6,y=1.5,2=3)

Sync Table
Uy IP:PORT (x=0,y=1,2=3)

Us IP:PORT (x=6,y=1.5,z=3) Us [0302,.]

Ut [0.5,0.3,..] U,H IP:PORT (x=1,y=2,2=3)

Uz [1,04,.]

Us IP:PORT (x=6,y=1.5,2=3)

Ut [05,03,.]
Ur [202,.]

Figure 2.5: Five clients are connected to the same VR space, one is the host/client and the others
are clients. On the top four levels of detail are defined: LO defines the maximum level of detail,
L1 and L2 define intermediates level of detail, and L3 no data transmission. The lower part of
figure illustrates the connections (i.e. black arrows) the server uses to broadcast the information about
enrollments/disenrollments that are used to update the Sync Table on each client. Each client uses the
information included in this Sync Table to establish peer-to-peer connections with other clients. Green
arrows show the peer-to-peer connections between clients to exchange high-throughput visualisation
data.

The lower part of figure illustrates the connections (i.e. black arrows) the server uses to broadcast the
information about enrollments/disenrollments that are used to update the Sync Table on each client.
Each client uses the information included in this Sync Table to establish peer-to-peer connections
with other clients. Green arrows show the peer-to-peer connections between clients to exchange high-
throughput visualisation data.

2.5 Summary

In this chapter we proceeded to deepen the theoretical knowledge necessary to understand the work
addressed in this thesis. We have described the features of the Leap Motion device used for tracking
and have also outlined the operation of the Unity3D game engine. In addition, we discussed and
explained an approach designed by us with the specific purpose of transmitting visual data relating
to users’ hands. The next chapter will explain how these technologies and approaches have been used
to create the prototype.

14

3 Prototype development

This chapter describes the implementation of a working prototype. The created prototype serves as a
proof of concept and therefore aims to demonstrate the creation of a VR multi-user environment using
low-cost platforms accessible to all. For this purpose, the prototype produced is capable of working on
any recently released Android mobile device, although iOS versions could easily be developed. Google
Cardboard technology is used as a HMD for VR, and the Leap Motion is used as the input device. In
order to make a VR experience accessible to all, as well as not being too expensive, it must be easy
and intuitive. The use of the Leap Motion device, which allows gesture-based interactions, provides a
much more natural type of interaction than a traditional controller.
The prototype implements the following basic features required in environments of this kind:

e Player movement: players can move and look around inside the virtual world.

e Hand based objects interactions: virtual objects inside the environment can be grabbed,
moved, rotated or scaled.

¢ Reticle based interactions: interactions based on where the user is looking at.
e Hand visualisation: hands are transmitted among users in high details.
e Multi-user support: players can host or join already created sessions and play with each other.

In the next section, a general overview of the application architecture will be presented. We will then
discuss the features listed above how they have been implemented.

3.1 Architecture overview

The application has been created using Unity3D version 2017.2 and is designed for use on Android
smartphones. Each client is connected to the Leap Motion’s Web service that is hosted on a computer
and leap-frames are transmitted encoded in the JSON format. The client deserialises the JSON-
formatted leap-frames and converts them to C# classes. The obtained leap-frames are then used to
render the local hands and make physical calculations on objects. Using this system, real hands are
tracked and used as an interface to interact with the application in real time. Changes made by a
client to an object are synchronized to all. We implemented the client-host requests to update the
states of mutable objects using the Unity3D’s native authoritative mechanism provided through the
HLAPIs. Peer-to-peer visualisation data exchanges are managed by the proposed distributed request-
based mechanism. We use the UDP protocol for timely delivery of data. Each client periodically
listens for incoming UDP packets on the network socket. The system architecture of our prototype
can be seen in Fig 3.1. The figure shows three conceptual blocks: green for the local Leap Motion
connection, blue for the local processing of the hand and its interactions and red for multiplayer.

3.2 Bringing Leap Motion to mobile devices

Leap Motion does not yet support its direct connection to smartphones as previously discussed on
Sec 2.2. Therefore, the Leap Motion is connected to a computer that in turns transmits the hand
tracking data to the smartphone via Websocket server. The created prototype uses the latest available
protocol, the “v6.json” version. Note that our communication approach is independent from this
computer-smartphone connection because hand joints’ data is handled at network level as it were
processed on the smartphone. When the mobile version of Leap Motion is released, it will therefore
be possible to use the prototype with the new version of the device without major modifications as
the leap-frames obtained and converted from the server behave in the same way as those obtained

15

T

°
\t Router ebsocken Computer Leap Motion Device

1
I @ I

1
= (C#)
r g ! Deserialize '
" Leap Frames '

LOD Manager \’ |

Requested a specific LOD Level J J

e
-
D Send LOD
<
<

Figure 3.1: Illustration of the setup architecture. The figure shows three conceptual blocks: green for
the local Leap Motion connection, blue for the local processing of the hand visualisation and red for
the multi-user aspect.

natively. When these leap-frames are received and converted by the application, hand information
is used locally on clients for hand interactions with mutable objects (that are then managed by the
authoritative server).

3.2.1 Frame conversion

Figure 3.2 illustrates how the Components used by Leap Motion assets work in the Unity environment
compared to our custom Components. The custom class ‘WebSocketConnection’ on the client side
takes care of getting messages from the server as a string and stores them in a buffer. These messages
are then taken over by another custom class, ‘FrameProvider’, which converts the strings into native
C# objects, ready to be used with the original assets created by Leap Motion. For conversion from
string to class, a custom parser specific to the protocol version used has been created. In this way, a
series of optimizations and operations are carried out to convert the data received from JSON. The
Leap motion data encoded in JSON does not fully correspond to the data used by C# classes, and
some calculations are therefore necessary to obtain a copy of the leap-frame with the same semantic
value as if it were obtained natively. For example, to handle rotations, the corresponding C+# class
uses quaternions, while in the JSON rotations are coded as vectors.

Unity APIs are not thread safe and are therefore only usable in the main thread, including those
used for graphic rendering. In order not to increase the number of tasks in the main thread and not
to cause a significant drop in frame rate, we carry out all conversion tasks in separate threads. For
resource sharing between different threads, the lock construct was used to protect critical sections.
Given the high frequency with which data is generated on the computer, there may be problems
with the large amount of bandwidth used or the large amount of data to be converted. Restrictions
may therefore arise in the wireless network used or in the phone’s computational capabilities. These
limitations would lead to an exponential increase in latency and thus make the VR experience not
adequate. To solve these problems we have adopted two similar approaches based on limiting the Leap
Motion hands update frame rate.

3.2.2 Frame rate limit approaches

To decrease the large number of calculations to be performed, a naive solution can be adopted, i.e.
to ignore the processing of some leap-frames. Instead of converting each string received from the
server, we can choose to convert only those at a certain frequency. This approach has the advantage
of allowing each individual device to choose the fluidity of the recreated hands but does not lead to
any improvement in the amount of bandwidth used. The opposite alternative is therefore to limit the

16

(a) (b)

o~
-

——
v
WebSocketConnection
(Retrieves JSON strings)
FrameProvider
(Deserialises JSON to C#)
\ 4 ¢
LeapServiceProvider CustomServiceProvider
(Get latest Frame from LP) (Get latest Frame received)
LeapHandController LeapHandController
(Subscribes to Frame Available Event) (Subscribes to Frame Available Event)
HandPool HandPool
(Renders Hands) (Renders Hands)

Figure 3.2: Obtaining and using Leap Motion data in Unity3D: comparison of standard flow and
our remote approach. Red rectangles represent custom Components, whereas blue ones represent
untouched Leap Motion Components.

(a) Shows the native method, usable by every Unity3D application directly connected to the Leap
Motion.

(b) Illustrates the approach we used to get usable leap-frames in smartphones.

frequency of server-side updates, in order to decrease the data usage. The Websocket server made
available by Leap Motion software does not allow for a customization of the update frequency, so to
implement such an approach we developed a custom Websocket server. This server, located on the
computer connected to the Leap, is used as an intermediate layer between the native server and the
client. This custom server therefore receives all the leap-frames from the native server but sends only a
subset of them to the client. The prototype created uses this methodology. In this way we can achieve
a great improvement in the amount of data sent. Considering a minimum frame rate limit of 30 fps to
have a good hand fluidity, and a 10KB leap-frame size in JSON, we get considerable reductions if we
compare this approach to sending every leap-frame using the native server with a medium frequency
of 110 fps.

3.3 VR interactions

A collaborative environment, to define itself as such, must at least have some kind of interaction
between players and between objects present in the virtual world. In our prototype, interactions can
be divided into two categories: those based on the gaze and those that make use of hands.

3.3.1 Gaze interactions

Gaze-based interactions are very common in VR environments and allow actions to be carried out
based on the direction in which a user is looking. Therefore, we placed a reticle in the middle of the
screen that has a double purpose: to make the user more aware of his actual direction in the virtual
world and to notify him about possible actions that can be taken with the object the user is looking

17

at. To activate a gaze-based interaction, the user can close his right hand while observing a particular
object to express the intention to activate an action. Alternatively, the user can use a physical key
in a controller connected to the prototype as confirmation input. This type of interaction allows the
prototype to be used even without the Leap Motion device, albeit with limited functions.

An observed object can belong into three possible cases, illustrated in Figure 3.3:

e No action available: no interaction with this object is possible. The reticle colour changes to
match gray (a).

e Available action that can be activated by pressing a button: The observed object
contains an action that can be activated by pressing a button on a controller or by closing a
hand while you are watching that object. An example of an object with this type of action could
be a music player, where we want to change audio tracks quickly. The reticle colour changes to
red (b).

e Available action that can be activated by holding down a button: The observed object
contains an action that can be activated by holding down a key on a controller or closing hands
for a certain period of time. This type of interaction is used for important actions that require
additional user confirmation, such as moving around the game world. The reticle uses a radial
selection bar and a selection slider (c) (d).

(b) (d)

Figure 3.3: Different aspects of the reticle for gaze-based interactions.

For the implementation of this type of interaction, we created a generic Component applicable to
any Gameobject that we want to make interactive, following the observer design pattern principle. The
purpose of this component is therefore to notify any observer that a particular event has been called
in order to initiate the corresponding action. The raycast technique is used to locate the observed
object: a ray is fired from the player’s position in the direction of his gaze. If the ray hits an object,
we check if it is interactive and if true the corresponding event is fired.

3.3.2 Hands interactions

In addition to creating interactions based on gaze, our prototype is characterised by the possibility of
using hands to interact with objects in the virtual world. Objects can be moved, rotated or scaled.
Each object, through the use of native Unity Components, has physical properties and therefore
reacts to gravity, motion or collision with other objects. The last available leap-frame is analyzed to
understand the hands’ gestures: if it is a “pinch” gesture, the area close to the hand is checked, and
if an object is present, the object is picked up and the grab mode is activated. The object therefore
changes colour to indicate that it has been taken and will move together with the hand as long as it
respects that pinch gesture. When the hand is released, the object returns to its original state and
regains its physical properties.

18

Figure 3.4 shows a possible sequence of actions for this type of interaction. A user wants to take
an object, so he approaches it with his hand (a). By pinching, the user takes the object (b) and places
it on top of another object. Once positioned, the object is released (c).

Figure 3.4: A player picks up an object and places it on top of a cube (First person view).

3.4 Multiplayer

The interactions addressed in the previous chapter are part of the local aspect of the prototype. In
fact, any user could start the application to perform one or more of the interactions just discussed, even
in a single player gaming session. However, in the case of multiple connected users, a modification or
result caused by any of these interactions must be transmitted to all connected users. The multiplayer
aspect of the prototype is therefore responsible for synchronising the latest game-state between users,
such as the position of users and objects at a given time. The transmission of visualisation data is
also included in the multiplayer aspect.

3.4.1 Player and object synchronization

We synchronise the latest game-state using a client server architecture, following the HLAPIs imple-
mentation. Each client, at regular intervals, notifies the server of any changes to be made to objects
under its authority. The server, being authoritative, is responsible for making changes and updating
all clients, including the requester. There are therefore two possible circumstances for a client: either
it causes changes in the game status, or it receives changes made by others. Clients transmit infor-
mation about objects for which they have authority, including the player itself or a handheld object.
The transmission takes place only in case of changes compared to a previous time interval. In order
to save bandwidth, only the actual changes since the last time interval are transmitted, and not the
full status of the objects. A mechanism of the kind described above is adequate to create multiuser
experiences, but it is not sufficient to ensure fluid experiences [29]. The first problem concerns the
fluidity of actions carried out at local level. For each action that the user performs, in fact, before
being able to view the changes caused, he must wait for the server to receive his request and for it
to respond with the modified data. There would therefore be a delay between the player’s actions
and the results seen and this would lead to frustration and poor immersion. We used the client-side
prediction technique [29] to solve this problem. Instead of sending the inputs and waiting for the
new game state to start rendering it, we can send the input and start rendering the outcome of that
inputs as if they had succeded, while we wait for the server to send the “true” game state. With
this approach, there are no longer any delays between the actions performed by the player and the
results seen, while the server maintains its authoritative status. Another problem caused by the naive
implementation would be related to the fluidity of entities updated by others. Since the server sends
state updates every certain interval of time, objects’ movement would be seen as choppy and jumping
at discrete positions. We therefore apply interpolation between the last two received state-updates
of the object, in order to create a more fluid movement. Algorithm 1 presents generic pseudocode to
illustrate the procedure described above. Each individual object whose status must be synchronized
within the network implements a Component with the same functionality.

19

Data:

SyncVector3 latest Position;

SyncVector3 latest Rotation;

SyncVector3 latestScale;

t1 = Time.Now;

Ag = 0.11s;

HasAuthority() = true if local player controls object, false otherwise;

while true do

if HasAuthority() == true then

if (t; - Time.Now) > A then

if (position is Changed) then
SendPosition(transform.position);
latestPosition = transform.position;

end

if (rotation is Changed) then

SendRotation(transform.rotation);

latestRotation = transform.rotation;

end

f (scale is Changed) then

SendScale(transform.localScale);

latestScale = transform.scale;

o o

end
t; = Time.Now;
end
else

InterpolatePosition();
InterpolateRotation();
InterpolateScale();

end

end
Algorithm 1: Generic Object Synchronisation

20

Table 3.1: Messages defined in the communication protocol.

Header | Syntax Description

ATP [AIP]:<ip>,<port>,<netID> Message the host sends to inform clients to add
a new entry in the Sync Table

RIP [RIP]:<netID> Message the host sends to inform clients to re-

move the entry of the disconnected client from
the Sync Table

RQ<n> | [RQ<n>]:<netID> Message a client sends to another client to re-
quest visualisation data at a specific level of de-
tail

AK<n> | [AK<n>]:<HandsParam>,<netID> | Message a queried client sends to a request-
ing client that contains the visualisation data
at a specific level of detail in the payload;
<HandsParam> integer value that defines the
type of hand contained in the payload (0: left,
1: right, 2: both)

3.4.2 Visualisation data exchange
We use the UDP protocol for timely delivery of data. Each client periodically listens for incoming
UDP packets on the network socket.

To enable effective communications, we define a protocol that specifies the structure of the messages
exchanged between the host and clients to update the Sync Table, and between clients to send requests
and transmit visualisation data at different levels of detail. Table 3.1 lists the messages defined by
our protocol.

The protocol functions in the following way. A client joins a VR session through HLAPIs. The host
assigns a unique identifier (NetID) to this client and broadcasts a message informing the connected
clients that an enrollment has occurred. Each message is composed of a header and a payload. The
header uses the first three bytes of the message to define the type of data carried by the payload.
When a client connects, the host sends an ‘AIP’ message to inform clients that a new entry in the
Sync Table should be added. When a client disconnects, the host sends an ‘RIP’ message to inform
clients a client should be removed from the Sync Table.

Clients are responsible for requesting the visualisation data to other clients. If client A wants
visualisation data of client B, A will send a request message ‘RQ’ to B requesting the visualisation
data at the desired level of details (i.e. based on their distance). When B receives the request, B
encapsulates the visualisation data in a message ‘AK’ and sends it to A. This procedure is repeated
periodically at a pre-defined frequency to show hand movements. Algorithm 2 details the overall
message handing procedure.

When the leap-frames are received by the smartphone using the Websocket connection (sec 3.2), we
use all the hand interaction elements on each client to handle hand interactions with mutable objects
through communications with the authoritative server. Note that all the hand interaction elements
within a leap-frame are necessary to Unity3D to trigger the correct physics when interactions with
mutable objects occur. Differently, we use only a subset of the hand interaction elements within a
leap-frame (i.e. joints positions) as visualisation data to transmit (at the appropriate level of detail)
to the other clients.

As described in Sec. 2.4.2, we use four levels of detail: L0, L1, L2 and L3. L0 defines the highest
level of detail, L1 and L2 are intermediate levels, and L3 defines no data transmission.

Fig. 3.5 illustrates how the hands are defined at different levels of detail and how visualisation
data are organised to efficiently access them for different levels of detail. One hand is represented at
LO with 240 bytes, at L1 with 120 bytes and at L2 with 12 bytes.

Fig. 3.6 shows a scenario where five clients are within the same VR space and visualisation data
are exchanged using the proposed distributed mechanism with levels of detail. The left-hand figure is
a screenshot taken from a Cardboard device, while the right-hand figure is a screenshot taken from a

21

Data:
t; = Time.Now; t5 = Time.Now;
As = 0.28; A, = 0.3s;
m = message; ¢ = client;
LOD = level of detail,;
Handle(m) = message handling as defined in Tab. 3.1;
while ¢rue do
if (t1 - Time.Now) > A, then
handData = getHandsData();
t1 = Time.Now;
end
if (t - Time.Now) > A, then
for c¢ in ConnectedClients do
LOD = calculateDistance(localClient, c);
requestHandData(c, LOD);
end
to = Time.Now;

end
if m == received then
Handle(m);
end
end

Algorithm 2: Message handling procedure.

LOD 2
(12 Bytes)

LOD 1
(120 Bytes)

LOD 0
(240 Bytes)

(b)

Figure 3.5: Example of three levels of detail with associated bytes count for the Leap Motion hand.
Blue joints are encoded and transmitted, gray joints are ignored.

A

22

Figure 3.6: Scenario where five participants are within the same VR space and visualisation data
are exchanged through the proposed distributed mechanism using levels of detail. The green arrows
illustrate whom the visualisation data is shared with.

desktop computer. The distance between clients is such that they create two groups of data exchange:
one group of two clients (left-hand figure) and one group of three clients (right-hand figure). In each
group there is one client waving its hands. With this configuration L0 (max resolution) is applied
between clients of each group and L3 (no data) is applied between clients of different groups. The
green arrows illustrate whom the visualisation data is shared with. From the Cardboard’s view we
can see the group of three clients in the background and we can observe that their hands’ movements
would not be visible even if their visualisation data were transmitted to the clients of the other group.

3.5 Summary

In this chapter we have presented the prototype produced, intended as a proof of concept. In addition
to listing the expected features, we have explained how they work and how they have been imple-
mented. The features presented, even if basic, already allow a decent level of interaction and represent
a starting point for many different types of applications. In the next chapter we will analyse in more
detail some technical aspects of the created product, such as frame rate or data consumption. As a
result, we will evaluate the actual usability and robustness of the prototype.

23

4 Results

In this chapter we will present and discuss results obtained from different evaluations made on our
prototype. The aim of the project is to create a VR application on mobile devices. Therefore,
particular attention has been paid to the frame rate obtained and to the latency measured by the
interactions between several users, as a VR experience must be fluid in order not to cause problems
for the player. In addition to quantitative results, some qualitative results will be discussed as a result
of the demonstration performed at the FBK ‘Open Day’ event.

4.1 Frame rate analysis

In this section we wanted to verify the frame rate obtained during the application execution. This is
very important in a VR application because, if the frame rate is low, the user may experience motion
sickness. The frame rate was measured on a scenario with a connected user in a stationary position
while using two hands. The scenario was recorded on a Huawei Honor 8. Two measurements of the
same scenario were made. The first one was carried out on a “cold” phone, i. e. without having been
used for several minutes, in order to have a CPU temperature equivalent to a normal use. The second
test was recorded after intensive use, where the CPU temperature was close to 40° Celsius. We made
these two measurements to evaluate the effect of thermal throttling. Termal throttling is a widespread
phenomenon in all smartphones, where the system lowers the frequency of use of CPU and/or GPU
to better disperse heat [22]. Figure 4.1 shows the frame rate recorded in these two sessions.

70 —

a
S
I

Framerate (Frames per seconds)
w S
o o
I I

Before CPU throttling - p=55.34
20 —

After CPU throttling - p=41.83

0 50 100 150 200 250 300 350
Time (s)
Figure 4.1: Frame rate recorded using the same scenario in two different instances: before and after
aggressive usage of the smartphone.

As the figure illustrates, performance after moderate use is severely degraded. For maximum
fluidity, it would be desirable to have a frame rate equivalent to the screen refresh rate. For most
smartphones, the refresh rate is 60Hz. Neither of the two measurements managed to maintain a stable
frame rate at 60fps, even if the recording made on a cold telephone managed to get very close, with
an average of u =55.34.

24

4.2 Distributed method analysis

We evaluated the proposed method by performing two experiments. Firstly, we measured the num-
ber of bytes transmitted during a simulated collaborative VR session. Secondly, we used multiple
smartphones as Cardboard devices and measured their transmission latency within a local wireless
network. In all the experiments, we compared the performance of our distributed approach against
a centralised (i.e. authoritative) approach, and by enabling and disabling the level of detail strategy,
namely LOD and NO LOD, respectively. All experiments involved up to seven clients connected to
the same VR space. One of the clients was the host. In order to stress the system, we streamed
sequences of leap-frames corresponding to two tracked hands, i.e. 480 bytes per leap-frame.

4.2.1 Network traffic

To measure the network traffic, we designed a simulation where the seven clients were positioned in
the VR space randomly. The VR space was 20x15 Unity3D units. The level of detail regions had radii
of 4, 8, 12 and >12 Unity3D units to define L0, L1, L2 and L3, respectively. Because the VR space
was limited and because the duration of the experiment was 150 seconds, we could simulate several
combinations of relative distances between clients and hence trigger transmissions with different levels
of detail.

Fig. 4.2 shows the trends of the total number of bytes transmitted as a function of the duration
of the experiment. When we account for the level of detail, we can effectively reduce the network
traffic using the proposed distributed approach as opposed to the centralised approach. Interestingly,
when the level of detail is not used, i.e. the visualisation data are exchanged amongst clients regardless
their distance, the centralised approach generates less network traffic than the distributed one. This
happens because, although the centralised approach is used, the level of detail strategy led to an
effective reduction of bytes when clients are distant from each other. For example, if client A is
located in L3 with respect to B, B will request visualisation data using the NO LOD distributed
strategy, whereas with a LOD centralised strategy no data will be requested.

The oscillations that are visible in NO LOD strategies are due situations where clients are distant
from each other in the VR space and data transmissions are reduced or even absent.

x108

3 --
= 5| |= =Centralised NO LOD -
£ — Centralised with LOD _--
S Distributed NO LOD -
= Distributed with LOD -
w 10+ -
£ -
o]
o
2 5-
©
=]
E -
0 = :
© % 5 10 15

Time (ms) x10%

Figure 4.2: Cumulative network traffic measured in bytes in the case of seven clients. Centralised and
distributed approaches that consider level of detail (with LOD) and that do not consider it (NO LOD)
are illustrated.

4.2.2 Transmission latency
In this experiment we evaluated the latency of the data transmission. We quantified the latency as
the delay measured by a client to send the request to another client and to receive the data. We tested
scenarios with three, five and seven clients connected via wireless. We used Google Nexus 5x, Huawei
Honor 8 and Nvidia Shield for the scenario with three clients, these three devices plus two Huawei
P10+ for the scenario with five clients and these five devices plus two computers for the scenario with
seven devices. Nvidia Shield was used as the host in all scenarios.

Fig. 4.3 shows the average latency as a function of the number of clients corresponding to each
scenario. The exact values of average and standard deviation are reported in the legend of the graph.

25

—o = Centralised NO LOD - u3=45.5, 03=28.8; u5=75.3, 05=97.3; M7=272-4, a7=202.4

—e— Centralised with LOD - 1,=54.2, 0,=43.5; 1,=72.5, 0,=39.7; ;1,=166.3, 7_=144.8
Distributed NO LOD - u3=26.8, 03=16.4; ﬂ5:33.6, 05=21 4; u7=49.4, a7=34.6
Distributed with LOD - 11,=21.6, 0,=12.6; 11,=29.7, 7,=19.0; 11,=50.2, 0_=45.1

300

250 -

s)

n

=]

S
\

5
Number of connected clients

Figure 4.3: Average latency as a function of the number of clients corresponding to centralised and
distributed approaches that consider level of detail (with LOD) and that do not consider it (NO LOD).
The network latency is the average of latency measurements collected over a period of three minutes.

The average latency measured when visualisation data are exchanged with the distributed strategy
is smaller than the latency measured with the centralised strategy. The use of level of detail reduces
in general the latency. We can observe that the variance is in general fairly large and this is due to
background threads of the devices that delay the processing of the received packets.

4.3 Qualitative analysis

In this section we will discuss the experience gained during the application test at the FBK’s ‘Open
Day’ event. In this initiative we were able to have the prototype tested by workers and researchers of
the foundation, of different ages and without previous experience on the prototype. Each user, after
a brief explanation of the application and the possibilities offered, was able to try the prototype for a
duration of 5 minutes. In overall, the demonstration lasted more than an hour. The demonstration
created for this event included two seats where two people could sit. Each user had its own viewer in
conjunction with a smartphone and a Leap motion connected to a computer. In the VR environment,
a table was created where the two users were placed at the ends. The demonstration offered the
opportunity for two people to interact in the same game world, exchanging objects and being able to
position them at will over the virtual table. In this demonstration it was not possible to move around
the game world, so it was necessary to ask the other user to take a certain object in case it was not
reachable. Figure 4.4 shows the VR environment used for the demonstration and a user trying the
application.

Users were impressed by the naturalness and faithful reconstruction of their hands. After a short
initial moment used to look around in the VR environment, users immediately started using their hands
to interact with objects. Although most were able to interact with them without great difficulty, some
users had difficulties. Some of these users have often tried to take objects as they would be taken
in the real world, i. e. not using the pinch gestures. This made us understand the need for more
natural interactions, or the possibility of introducing an initial tutorial to notify players of the gestures
to use. Another reason for discussion was the area reached by the hand in the virtual world. Some
users have in fact had difficulty in understanding the proximity of an object to their position in the
virtual world, and have therefore continuously tried to take an object too far away from them, without
success. Higher graphic fidelity or a different feedback system within the VR experience could address
this problem. For example, if an user is trying to take an object too far away, this object could
have a red border, to indicate that it is not reachable. In addition to interacting with objects, users

26

(a)

Figure 4.4: FBK’s ‘Open Day’ demonstration. (a) VR environment created for the demonstration.
(b) User trying the application for the first time.

were impressed by the possibility of seeing the hands of the other player. Interactions based on hand
movement such as greetings or other forms of sign communication were frequent. As for the more
technical aspects, the connection between the two instances of the prototype did not give any problems
and lasted more than one hour. The only disconnection problem occurred with the connection from
the Leap Motion to the smartphone, which was solved by an automatic restart of the software. The
overall duration of this test can therefore be compared to a typical gaming session, although there is
no feedback on the actual sensations caused by such a duration to a single user.

In conclusion, the results obtained from this demonstration are generally positive. The robustness
and immediacy of the prototype have been validated, while numerous feedback has been gathered on
how to improve interactions and make them more natural.

4.4 Discussion

From the results obtained we can now answer our research questions. Is a low cost multi-user VR
application feasible on mobile devices? The results obtained show that it is indeed possible, although
with some limitations. They demonstrate the feasibility, for about ten players connected to the same
local network, of playing with each other using their smartphones. The experience, even if possible,
is certainly not ideal:

Performance: A VR application of this kind requires great fluidity to avoid discomfort to the
player. It is very difficult for smartphones to maintain a stable level of performance, given the problem
of termal throttling and battery power. Compared to high-end counterparts, the ideal duration of
gaming sessions is considerably shorter. The release of mobile devices that are increasingly powerful
and adapted to AR/VR experiences could reduce this disadvantage in the future.

Leap Motion connection: Although the Leap Motion device provides an unprecedented level of
immersion, it currently has complications for use in a mobile environment. Given the need for a wired
connection with a computer, this setup is currently suitable for research purposes but not ideal in a
consumer environment. The release of a version natively compatible with mobile devices may solve
this limitation.

Despite this, the prototype produced represents a good compromise compared to high-end VR
experiences, which would require a high-performance computer and a high cost viewer. It makes a
VR reality available to everyone, even if limited.

4.5 Summary

In this section we presented and discussed some experiments carried out on the prototype in different
contexts. These experiments served to better understand the quality of the prototype and its limi-
tations. The results obtained demonstrate the feasibility of achieving such an application in mobile

27

devices, albeit with moderate limitations compared to a high end experience.

5 Conclusion and future work

This chapter briefly summaries the thesis and its conclusions. Possible future work is also presented.

5.1 Conclusion

In this thesis, we wanted to study the possibility of creating a VR multi-user application at low cost
and accessible to everyone. For this purpose, smartphones and Google Cardboard technology were
used. The Leap Motion hand tracking device was used to make the VR experience immersive and
accessible even to those who have no previous experience with controllers, while keeping the total
cost of the application low. The use of this device allows for gesture-based interactions. In this
proof of concept we wanted to implement some essential features for applications of this type, in
order to create a possible starting point for applications from different domains. Therefore, we have
implemented movement within the VR environment and the possibility of interaction with the world
or with other players through the use of their own hands. Specifically, we have implemented the
possibility of manipulating virtual objects and the ability to see the exact shape of each user’s hands,
to create interactions based on sign language. We analysed and discussed some of the technologies
used to implement the prototype, such as the Unity3D game engine and Leap Motion software. We
then listed and presented the features implemented and discussed their implementation. We also
presented the system designed to transmit a large amount of data in an optimised way, to allow a
detailed reconstruction of each player’s hands in real time. When compared to a traditional data
transmission method, the system created has reduced bandwidth usage, reduced latency and is more
scalable, allowing more users to partecipate in the same VR environment. We have performed tests
in real scenarios and simulations to verify the actual validity and effectiveness of the prototype. The
results obtained have demonstrated the possibility of using the prototype by at least seven players.
However, the prototype produced has strong limitations when compared to high-end VR applications
on computers, due to the fact of using smartphones. The high battery consumption, the impossibility
of using the Leap motion device natively and the low computational power render the prototype a
possibility, but not an ideal application.

5.2 Future work

There could be numerous developments and future works for our thesis. Some of them are listed as
follows:

1. Development in various domains: The prototype produced serves as a basis for many
possible similar applications in different domains. Think of an application whose purpose is to
improve the brainstorming or product design phase. We could create a collaborative environment
where objects can be built. Another development could be in the area of videoconferencing. With
the possibility of interacting with three-dimensional objects, numerous possibilities would open
up. Think also of the construction sector, where it would be possible to explore and interact
with a building still under construction. In the furniture sector, a user could, from home, view
the various pieces of furniture and interact with them. In general, many industries could benefit
from an application accessible to all that would allow such a level of interaction.

2. Spatial audio: To improve the interaction between users, we could implement a voice chat
that allows you to communicate also by voice. In addition, as many VR experiences already
offer, we could use 3D spatialization technology to deliver spatial audio in order to increase the
immersion of the users in the VR environment.

3. Leap Motion mobile support: When mobile device support is released for the Leap Motion

28

device, we could integrate and use this technology without the need for a computer, greatly
reducing latency and complexity of use.

. Testing and optimization for internet sessions: We could understand in depth how the pro-
totype works on the Internet by simulating games sessions on a non-local network. In addition,
further optimizations could be studied to make the gaming experience better.

29

Bibliography

Ahmed, D. T. and Shirmohammadi, S. “A Dynamic Area of Interest Management and Collab-
oration Model for P2P MMOGs”. In: Proc. of IEEE Symposium on Distributed Simulation and
Real-Time Applications. Vancouver, CAN, Oct. 2008.

Akiduki, H. et al. “Visual-vestibular conflict induced by virtual reality in humans”. In: Neuro-
science Letters 340.3 (2003), pp. 197-200.

Anthes, C. et al. “State of the Art of Virtual Reality Technologies”. In: 2016 IEEE Aerospace
Conference (Mar. 2016).

Bassily, D. et al. “Intuitive and Adaptive Robotic Arm Manipulation using the Leap Motion
Controller”. In: 2014, pp. 1-7.

Carlini, E., Ricci, L., and Coppola, M. “Reducing server load in MMOG via P2P Gossip”. In:
Proc. of Workshop on Network and Systems Support for Games. Venice, I'T, Nov. 2012.

Choi, S., Jung, K., and Noh, S. D. “Virtual reality applications in manufacturing industries:
Past research, present findings, and future directions”. In: Concurrent Engineering 23.1 (Mar.
2015), pp. 40-63.

Cruz-Neira, C. et al. “The CAVE: Audio Visual Experience Automatic Virtual Environment”.
In: Commun. ACM 35.6 (1992), pp. 64-72.

Davis, J., Hsieh, Y., and Lee, H. “Humans perceive flicker artifacts at 500Hz”. In: Scientific
Reports 5 (Feb. 2015), pp. 2706-2713.

Freina, L. and Ott, M. “A Literature Review on Immersive Virtual Reality in Education: State
Of The Art and Perspectives”. In: Proc. of eLearning and Software for Education. Bucharest,
RO, Apr. 2015.

Gobbetti, E. and Scateni, R. “Virtual reality: Past, present and future”. In: Studies in health
technology and informatics 58 (Feb. 1998), pp. 3—20.

Greenwald, S. W., Corning, W., and Maes, P. “Multi-User Framework for Collaboration and
Co-Creation in Virtual Reality”. In: Proc. of Conference on Computer Supported Collaborative
Learning. Philadelphia, US, June 2017.

Guna, J. et al. “An analysis of the precision and reliability of the Leap Motion sensor and its
suitability for static and dynamic tracking”. In: Sensors 14.2 (Feb. 2014), pp. 3702-3720.

Hilfert, T. and Konig, M. “Virtual reality applications in manufacturing industries: Past research,
present findings, and future directions”. In: Visualization in Engineering 4.3 (Dec. 2016), pp. 1-
18.

Khademi, M. et al. “Free-hand interaction with leap motion controller for stroke rehabilitation”.
In: Proc. of Human Factors in Computing Systems. Toronto, ON, May 2014.

Kim, K., Yeom, I., and Lee, J. “HYMS: A Hybrid MMOG Server Architecture”. In: IEICE
Trans. on Information and Systems 87-D (Jan. 2004), pp. 2706-2713.

Lin, J. J. W. et al. “Effects of field of view on presence, enjoyment, memory, and simulator
sickness in a virtual environment”. In: Proceedings IEEE Virtual Reality 2002 (2002), pp. 164—
171.

30

McMahan, R. P. et al. “Evaluating natural interaction techniques in video games”. In: 2010
IEEE Symposium on 3D User Interfaces. Waltham, US, Mar. 2010.

Mohandes, M., Aliyu, S., and Deriche, M. “Arabic sign language recognition using the leap
motion controller”. In: 2014, pp. 960-965.

Pani, M. and Poiesi, F. Distributed data exchange with Leap Motion. submitted. 2018.

Pausch, R., Crea, T., and Conway, M. “A Literature Survey for Virtual Environments: Mili-
tary Flight Simulator Visual Systems and Simulator Sickness”. In: Presence: Teleoper. Virtual
Environ. 1.3 (July 1992).

Pretto, N. and Poiesi, F. “Towards gesture-based multi-user interactions in collaborative vir-
tual environments”. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/WS8.
Hamburg, GE, Nov. 2017, pp. 203-208.

Sahin, O. and Coskun, A. K. “On the Impacts of Greedy Thermal Management in Mobile
Devices”. In: IEEE Embedded Systems Letters 7.2 (2015), pp. 55-58.

Schmalstieg, D. and Gervautz, M. “Demand-driven geometry transmission for distributed virtual
environment”. In: Computer Graphics Forum 15.3 (Aug. 1996), pp. 421-431.

Bruno Kessler Foundation. https://www.fbk.eu/it/. accessed: Feb 2018.

Google Cardboard Manufacturers Kit. https: //vr.google.com / cardboard / manufacturers,.
accessed: Feb 2018.

Google Daydream. https://vr.google.com/daydream/. accessed: Feb 2018.

Google Daydream Standalone HMD. https://vr.google.com/daydream /standalonevr/. accessed:
Feb 2018.

HTC Vive HMD. https://www.vive.com/us/. accessed: Feb 2018.

Latency Compensating Methods in Client/Server In-game Protocol Design and Optimization.
http://web.cs.wpi.edu/~claypool/courses/4513-B03 /papers/games/bernier.pdf. accessed: Feb
2018.

Leap Motion. leapmotion.com. accessed: Feb 2018.

Leap Motion framerate. https://forums.leapmotion.com /t /sample-period-frames- frequency /
3281. accessed: Feb 2018.

Leap Motion latency. blog.leapmotion.com/understanding-latency-part-1. accessed: Feb 2018.

Leap Motion mobile support. http://blog.leapmotion.com /mobile- platform/. accessed: Feb
2018.

Leap Motion software V2. https://developer.leapmotion.com/sdk/v2/. accessed: Feb 2018.

Leap Motion software version Orion (Beta). https://developer.leapmotion.com /get-started.
accessed: Feb 2018.

Leap Motion Software version Orion SDK. https://developer.leapmotion.com/documentation/
csharp/index.html. accessed: Feb 2018.

Oculus Rift HMD. https://www.oculus.com/. accessed: Feb 2018.

Samsung Gear VR specifications. https://www.oculus.com /blog /introducing- the-samsung-
gear-vr-innovator-edition/. accessed: Feb 2018.

Second Life. secondlife.com. accessed: Feb 2018.
Unity3D. unity3d.com. accessed: Feb 2018.

Unity3D High Level API. docs.unity3d.com /Manual / UNetUsingHLAPI.html. accessed: Feb
2018.

Unity3D Multiplayer. https://docs.unity3d.com/Manual /UNet.html. accessed: Feb 2018.
Unity3D Personal license. https://store.unity.com/products/unity-personal. accessed: Feb 2018.

31

[44] Unity3D Popularity Survey. https://unity3d.com/public-relations. accessed: Feb 2018.
[45] VibeHub. youtu.be/azUXUr6rWSec. accessed: Feb 2018.

32

